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Complete phase diagram for the integrable chain with
alternating spins in the sectors with competing interactions
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Institut für Physik, Humboldt-Universität, Theorie der Elementarteilchen, Invalidenstrasse 110,
10115 Berlin, Germany

Received 26 August 1997

Abstract. We investigate the anisotropic integrable spin chain consisting of spinss = 1
2 and

s = 1 by means of thermodynamic Bethe ansatz for the anisotropyγ > π/3, where the analysis
of the Takahashi conditions leads to a more complicated string picture. We give the phase
diagram with respect to the two real coupling constantsc̄ and c̃, which contain a new region
where the ground state is formed by strings with infinite Fermi zones. In this region the velocities
of sound for the two physical excitations have been calculated from the dressed energies. This
leads to an additional line of conformal invariance not known before.

1. Introduction

In 1992 de Vega and Woynarovich [1] constructed the first example of an integrable spin
chain with alternating spins of the valuess = 1

2 ands = 1 on the basis of the well known
XXZ( 1

2) model. We call this modelXXZ( 1
2, 1). It contains two real coupling constants

c̄ and c̃. Most authors have limited their study to positive values for them. In our series
of papers [2–4] we studied theXXZ( 1

2, 1) model in the whole(c̄, c̃)-plane and determined
the ground state by thermodynamic Bethe ansatz (TBA) for equal signs of couplings and
for competing interactions in the caseγ 6 π/3. We have found four regions with different
ground states. Two of them contain only strings with infinite Fermi zones, they include the
sectors with equal signs of the couplings and are well studied.

In this paper we wish to deal with the remaining case of competing interactions for
γ > π/3. The paper is organized as follows. After having reviewed the definitions in
section 2 we start our analysis with TBA in section 3. We restrict ourselves to special
values of the anisotropyγ > π/3 and perform the analysis of the Takahashi conditions.
The TBA equations are given explicitly. In section 4 we discuss them with respect to
the values of the couplings̄c and c̃, what leads to the ground-state phase diagram, which
contains a new region with strings having infinite Fermi zones. In this region the velocities
of sound for the two physical excitations are calculated in section 5, while section 6 contains
our conclusions.

We found it necessary to use the abbreviations I, II and III for our papers [2–4]
respectively.
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2. Description of the model

We refer the reader to I for the basics of the model.
Our Hamiltonian of a spin chain of length 2N is given by

H(γ ) = c̄H̄(γ )+ c̃H̃(γ ) (2.1)

with the two couplingsc̃ and c̄. The anisotropy parameterγ is limited to 0< γ < π/2.
For convenience we repeat the Bethe ansatz equations (BAE), the magnon energies and
momenta and the spin projection(

sinh(λj + i γ2 )

sinh(λj − i γ2 )

sinh(λj + iγ )

sinh(λj − iγ )
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= −

M∏
k=1

sinh(λj − λk + iγ )

sinh(λj − λk − iγ )
j = 1 . . .M (2.2)
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2 sinγ
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log
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)
+ log

(
sinh(λj + iγ )

sinh(λj − iγ )

)}
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Sz = 3N

2
−M. (2.5)

3. Thermodynamic Bethe ansatz

Following paper I we assume that the solutions of (2.2) are of the string-type in the
thermodynamic limit

λn,j,να = λn,να + i(n+ 1− 2j)
γ

2
+ 1

4
iπ(1− ν)+ δn,j,να j = 1 . . . n. (3.1)

Here λn,να is the real centre of the string,n is the string length andν is the parity of the
string with values±1. The last term is a correction due to finite-size effects. These strings
have to obey the Takahashi conditions [5]

νn sinγj sinγ (n− j) > 0 j = 1 . . . n− 1. (3.2)

Substituting (3.1) into (2.2) and taking the logarithm yields

Ntj,1(λ
nj
α )+Ntj,2(λnjα ) = 2πI

nj
α +

∑
k

∑
β

2jk(λ
nj
α − λnkβ , νj νk) (3.3)

with the known notations

tj,2S(λ) =
min(nj ,2S)∑

k=1

f (λ, |nj − 2S| + 2k − 1, νj ) (3.4)

2jk(λ) = f (λ, |nj − nk|, νj νk)+ f (λ, (nj + nk), νj νk)

+2
min(nj ,nk)−1∑

k=1

f (λ, |nj − nk| + 2k, νj νk) (3.5)
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and

f (λ, n, ν) =
{

0 nγ/π ∈ Z
2ν arctan((cot(nγ /2))ν tanhλ) nγ /π /∈ Z.

(3.6)

Here we have used the fact that a given string lengthn > 1 corresponds to a unique parity,
which is a consequence of (3.2). The numbersI

nj
α are half-odd integers counting the strings

of lengthnj .
Introducing particle and hole densities in the usual way, we perform the limiting process

N →∞
aj,1(λ)+ aj,2(λ) = (ρj (λ)+ ρ̃j (λ))(−1)r(j) +

∑
k

Tjk ∗ ρk(λ) (3.7)

wherea ∗ b(λ) denotes the convolution

a ∗ b(λ) =
∫ ∞
−∞

dµa(λ− µ)b(µ) (3.8)

and

aj,2S(λ) = 1

2π

d

dλ
tj,2S(λ) Tj,k(λ) = 1

2π

d

dλ
2j,k(λ). (3.9)

The sign (−1)r(j) results from the requirement of positive densities in the ‘non-
interacting’ limit.

We are now able to express energy, momentum and spin in terms of the densities via
(2.3)–(2.5). The standard procedure leads to equations determining the equilibrium state at
temperatureT (TBA equations):

T ln
(

1+ exp
(εj
T

))
= −2πc̄aj,1(λ)− 2πc̃aj,2(λ)+

∑
k

T ln

(
1+ exp

(−εk
T

))
∗ Ajk(λ)

(3.10)

with

Ajk(λ) = (−1)r(k)Tjk(λ, νj νk)+ δ(λ)δjk (3.11)

and
ρ̃j

ρj
= exp

(εj
T

)
. (3.12)

Again the free energy can be expressed in terms of our new variablesεj (λ):

2F = F

N
= −

∫ ∞
−∞

dλ
∑
j

(−1)r(j)(aj,1(λ)+ aj,2(λ))T ln

(
1+ exp

(−εj
T

))
. (3.13)

In I we analysed TBA equations forγ = π/µ, µ . . . integer,µ > 3, where strings:
(i) nj = j , νj = 1, j = 1 . . . µ− 1,
(ii) nµ = 1, νµ = −1

occur. The equations obtained allow the complete discussion of the ground-state properties
for values 0< γ 6 π/3. On the other hand, the picture forγ > π/3 is still not fully clear.
For this reason we wish to investigate the case

π

γ
= 2+ 1

µ
µ ∈ N µ > 2. (3.14)

This restrictsγ to 2π/5 < γ < π/2. The analysis of (3.2) then leads to three Takahashi
zones with:
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(i) n1 = 1, ν1 = 1,
(ii) nj = 2j − 3, νj = (−1)j+1, j = 2 . . . µ+ 1,
(iii) nµ+2 = 2, νµ+2 = 1.
The operatorAjk (3.10) now has to be reversed by

C11 = δ(λ)− d1(λ)

C21 = −C23 = s2(λ) C22 = 1

Cjk = δ(λ)δjk − s2(λ)(δj+1k + δj−1k) j, k = 3 . . . µ

Cµ+1,µ = −s2(λ) Cµ+1µ+1 = Cµ+2µ+1 = −Cµ+1µ+2 = 1
2δ(λ)

Cµ+2µ+2 = δ(λ)

(3.15)

where

s2(λ) = 1

2(π − 2γ ) cosh(πλ/(π − 2γ ))

d1(λ) = 1

2π

∫ ∞
−∞

eiωλ cosh(ω(π − 3γ )/2) dω

2 cosh(ω(π − 2γ )/2) cosh(ωγ /2)
.

(3.16)

The reversed TBA equations read

ε1(λ) = −2πc̄s1(λ)− 2πc̃d1(λ)− T d1 ∗ ln(f (ε1))− T s2 ∗ ln(f (ε2))

ε2(λ) = 2πc̃s2(λ)+ T s2 ∗ ln(f (ε3))− T s2 ∗ ln(f (ε1))

εj (λ) = −T s2 ∗ ln(f (εj+1)f (εj−1))− δjµT s2 ∗ ln(f (−εµ+2)) j = 3 . . . µ

εµ+1(λ) = −T s2 ∗ ln(f (εµ))

εµ+2(λ) = T s2 ∗ ln(f (εµ))

(3.17)

with

s1(λ) = 1

2γ cosh(πλ/γ )
(3.18)

and the Fermi function

f (x) = 1

1+ ex/T
. (3.19)

This system of equations looks very similar to equations (3.17) in I. In both cases only
the strings with Takahashi indices 1, 2,µ+2 (µ in I) can occur in the ground state. Notice
that the(2,+)-strings and the(1,−)-strings have interchanged their positions in I(3.17) and
(3.17).

4. Ground states and phase diagram

To obtain the ground state one has to carry outT → 0 in (3.10) and (3.17). Eliminating
the strings which are not relevant for the ground state one arrives at the systems

ε1+(λ) = −2πc̄s1(λ)−K1 ∗ ε−1−(λ)
ε2+(λ) = −2πc̃s1 ∗ s1(λ)− 2πc̃s1(λ) ∗ ε−1+(λ)+K2 ∗ ε−1−(λ)
ε1−(λ) = 2πc̄s1 ∗K1(λ)+ 2πc̃K1(λ)+K1 ∗ ε−1+(λ)−K3 ∗ ε−1−(λ)

(4.1)

or equivalently

ε1+(λ) = −2πc̄s1(λ)− 2πc̃d1(λ)+ d1 ∗ ε+1+(λ)+ s2 ∗ ε+1−(λ)
ε2+(λ) = −K4 ∗ ε+1−(λ)
ε1−(λ) = 2πc̃s2(λ)− s2 ∗ ε+1+(λ)+ (δ −K5) ∗ ε+1−(λ).

(4.2)
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Here for the sake of clarity we have labelled the strings by their lengths and parities instead
of Takahashi indices.ε± denote positive and negative parts ofε respectively. The functions
newly introduced are defined via their Fourier transforms and are given in the appendix.

It is remarkable that these equations are valid for the whole regionπ/3 < γ < π/2
though they are obtained relying on the TBA for 2π/56 γ < π/2. This is due to the fact
that the relevant part of the string picture does not change passing the pointγ = 2π/5,
what can easily be checked by performing the Takahashi analysis for1

3 < π/γ < 5
2.

Now one can discuss (4.1) and (4.2) with respect to the signs ofc̄ and c̃ for
π/3< γ < π/2.

(a) c̄, c̃ > 0. The solution can be given explicitly. We have

ε1+(λ) = −2πc̄s1(λ) ε2+(λ) = −2πc̃s1(λ). (4.3)

This is the solution of de Vega and Woynarovich [1].
(b) c̄ < 0. From (4.1) we haveε1+ ≡ ε+1+. Therefore we find the following integral

equations for the two relevant functionsε2+ andε1−:

ε2+(λ) = −K4 ∗ ε+1−(λ)
ε1−(λ) = 2πc̄s(λ)+ c̃g(λ, γ )+ s ∗K6 ∗ ε+1−(λ).

(4.4)

(The definition ofg(λ, γ ) is repeated in the appendix.) From these equations it can be seen
that for the vanishing positive part ofε1−(λ) the solution discussed in I is reproduced. The
borderlines of this sector are found in II. Beyond this lineε1−(λ) is positive in an interval
(−b, b). b is called the Fermi radius. It increases moving anticlockwise towards the line
c̄ = 0, where it reaches infinity (see figure 1).

(c) c̃ < 0. From (4.2) we see that the solution can only be self-consistent, ifε+1− ≡ 0
holds. One is left with the integral equations

ε1+(λ) = −2πc̄s1(λ)− 2πc̃d1(λ)+ d1 ∗ ε+1+(λ)
ε1−(λ) = 2πc̃s2(λ)− s2 ∗ ε+1+(λ)

(4.5)

for ε1+ andε1−. We want to discuss the caseε+1+ ≡ 0 first. Then the solution reads

ε1+(λ) = −2πc̄s1(λ)− 2πc̃d1(λ)

ε1−(λ) = 2πc̃s2(λ).
(4.6)

The sector where this solution exists is given by the requirements

ε1+(λ) 6 0 ε1−(λ) 6 0. (4.7)

While the latter condition is always fulfilled we expect restrictions on the values ofc̄ and
c̃ coming from the first one. Puttingλ = 0 yields

c̄

|c̃| > 2γ d1(0). (4.8)

For λ→∞ we look at the asymptotics

ε1+(λ) ∼= −2π

γ
e−πλ/γ

(
c̄ + c̃ tan

(
π2

2γ

))
. (4.9)

This yields

c̄

|c̃| > tan

(
π2

2γ

)
. (4.10)
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Figure 1. Phase diagram in the(c̃, c̄)-plane forγ = π/3, 3π/8, 2π/5 and 3π/7 respectively.
The string contents of the sectors is indicated. Axes are drawn broken except they coincide
with sector borders. Upper indices indicate infinite and finite Fermi zones. In the latter case,
the second index distinguishes, whether the filling starts atλ = 0 or λ = ∞. The heavy line
marks a new line of conformal invariance (see section 5).

The more restrictive one of the inequalities (4.8) and (4.10) marks the borderline of the
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Figure 1. (Continued)

investigated sector. Noting

tan

(
π2

2γ

)
> 2γ d1(0) for

π

3
< γ <

2π

5
(4.11)

tan

(
π2

2γ

)
< 2γ d1(0) for

2π

5
< γ <

π

2
(4.12)
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Figure 2. Phase diagram forc = c̄/|c̃| > 0 overγ . The sectors labelled differ with respect to
their string contents. The heavy curve indicates a new line of conformal invariance.

and

2γ d1(0) = 1 for γ = 2π

5
(4.13)

we conclude the following. The region with infinite Fermi zones for 1-strings with different
parities is given by equation (4.8) for 2π/5 6 γ < π/2 and by equation (4.10) for
π/3< γ 6 2π/5. Below the line specified by (4.8) and (4.10) respectivelyε1+ is positive
in an interval (−b, b) for 2π/5 < γ < π/2, while it is positive for |λ| ∈ (b,∞) for
π/3 < γ < 2π/5. b is again called the Fermi radius. Moving anticlockwise in the(c̄, c̃)-
plane from the line (4.8) or (4.10),b increases (decreases) untilε1+ is completely positive
and the solution from I is reproduced (see figure 1). The borderline of this sector is again
given in II. Forγ = 2π/5 no region with finite Fermi zone for(1,+) exists. The phaselines
coincide at this point (see figure 1).

This, together with the results from I and II, allow us to give the phase diagram in the
sectors with competing interactions, i.e. for different signs of the coupling constants (see
figures 2 and 3). The sectors are labelled according to table 1 and are different with respect
to the string contents.

5. The new region II

Next we deal with the region specified by equations (4.8) and (4.10). The dressed energies
are given by (4.6). The dressed momenta can be easily found noticing

dp(λ)

dλ
= −ε(λ)

2

∣∣∣∣
c̄=c̃=1

. (5.1)

Therefore from (4.6) the dispersion relation

ε1− = 2πc̃

π − 2γ

sin 2p1−
2

(5.2)
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Figure 3. Phase diagram forc = c̃/|c̄| > 0 overγ .

Table 1. Sectors appearing in the phase diagram for competing interactions. Upper indices
indicate infinite and finite Fermi zones. In the latter case, the second index distinguishes,
whether the filling starts atλ = 0 or λ = ∞.

I (1,−)∞, (1,+)f,0
II (1,−)∞, (1,+)∞
III (1,−)∞, (1,+)f,∞
IV (1,−)∞
V (1,−)∞, (2,+)f,0
VI (1,−)f,∞, (2,+)∞

follows with the speed of sound

v1− = − 2πc̃

π − 2γ
> 0. (5.3)

The dispersion relation for the(1,+)-strings is given implicitly by (4.6) together with (5.1).
The speed of sound then reads

v1+ = 2π

γ

c̄ + c̃ tan(π2/(2γ ))

1+ tan(π2/(2γ ))
> 0. (5.4)

It vanishes on the sector border (4.10) forπ/3< γ 6 2π/5.
Now it is natural to look for possible lines of conformal invariance which must have

v1+ = v1−, with the solution

c̄

|c̃| =
1

π − 2γ

[
γ + (π − γ ) tan

(
π2

2γ

)]
. (5.5)

Analytical and numerical estimates show that there is always a solution fulfilling (4.8) and
(4.10).
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6. Conclusions

We have investigated theXXZ( 1
2, 1) model in the region of anisotropyπ/3< γ < π/2 by

means of TBA. The integral equations describing the ground state change drastically when
passing the pointγ = π/3. While in the case of equal signs of the coupling constants this
is of no influence on the ground state (what is already known from [2, 3]), in the case of
competing interactions the picture changes. The most striking consequence is the existence
of a new region with strings(1,+) and (1,−) having infinite Fermi zones in the sector
c̄ > 0, c̃ < 0, which also contains a new line exhibiting conformal invariance. Outside this
region a finite Fermi radius for the(1,+)-strings occurs. Here the model behaves similar
to the one investigated in [6, 7].

In the sectorc̄ < 0, c̃ > 0 the strings(2,+) and (1,−) interchange their behaviours
compared withγ 6 π/3, i.e. now the(1,−)-strings occur with finite Fermi zone, while the
(2,+)-strings always have an infinite one.

In sectors 3 and 6, where the filling for the(1,+)- respectively(1,−)-strings starts at
infinity, this causes the appearance of two different speeds of sound for each of them, to be
calculated atλ = b andλ = ∞.

It seems worthwhile investigating these new regions in the sectors of competing
interaction with respect to the excitations. We hope to return to this point in a future
publication.

Appendix

g(ω, α) = 2π
coshωα/2

coshω(π − γ )/2
K1(ω) = coshω(π − 3γ )/2

coshωγ/2

K2(ω) = coshω(π − γ )/2
2 cosh2ωγ/2

K3(ω) = sinh2ω(π − 2γ )/2

cosh2ωγ/2

K4(ω) = 1

2 coshω(π − 3γ )/2

K5(ω) = coshωγ/2

2 coshω(π − γ )/2 coshω(π − 3γ )/2

K6(ω) = 2 sinh2ω(π − 2γ )/2

coshω(π − 3γ )/2

s(ω) = 1

2 coshω(π − γ )/2.

References

[1] de Vega H J and Woynarovich F 1992J. Phys. A: Math. Gen.25 4499
[2] Meißner St and D̈orfel B-D 1996J. Phys. A: Math. Gen.29 1949



Phase diagram forXXZ( 1
2, 1) 71

[3] Dörfel B-D and Meißner St 1996J. Phys. A: Math. Gen.29 6471
[4] Dörfel B-D and Meißner St 1997J. Phys. A: Math. Gen.30 1831
[5] Takahashi M and Suzuki M 1972Progr. Theor. Phys.48 2187
[6] Tsvelick A M 1990 Phys. Rev.B 42 779
[7] Frahm H 1992J. Phys. A: Math. Gen.25 1417


